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7. The asymptotic analysis has shown that the free vibrations of piezoceramic shells
with preliminary polarization along the as-lines with frontal surfaces without electrodes can
be subdivided into 1) quasitransverse with low variability (0 <Ct<Ys), 2) quasitransverse
with high variability (Y, < t<<1), 3) quasitransverse with variability ¢ =1/,, 4) quasitangential
(0 < t< 1), and 5) ultralow frequency of Rayleigh type (0 < t<<l/y).

Each of these types of vibrations is described by a corresponding set of equations. Such
a classification is physically conceivable and considerably simplifies the calculation of the
natural frequencies and the other desired quantities.

We note that for the same classification of the free vibrations as in the theory of non-
electric shells, the systems of principal and additional boundary value problem equations
differ qualitatively from the corresponding non-electric shell problems in the high order of
the systems of equations, the large number of initial quantities, and the boundary conditions.
Hence, the classification obtained for the free vibrations of piezoceramic shells should be

considered as a generalization of the classification for the free vibrations of non-electric
shells.
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DIFFERENTIAL GAMES WITH VARIABLE STRUCTURE, WITH A GROUP
OF PURSUERS GHASING A SINGLE TARGET™

K.V. DEMIDOV

Differential games with variables structure /l1/ is which m pursuers chase
a single target are considered. Sufficient conditions are given for the
pursuit problems in such games to be solvable., Strategies leading to
capture are devised. An example of a game for which the sufficient
conditions proposed are essential, is given.

Let the motion of the i-th object (i=1,...,m) prior to switchover to be described by the
following equation:
5@ = P (1) P + /P ) — e’ ), 10, T (1)
50 (0) = 2°
and after the switchover by
5® =P ()P + ) @) — P (), t=(,+ o) @
5® (v) = By (w) 2V ()
Here sV eR™, PR, iV (1) and ¢, () are continuous n;Xnm - and m; X m; matrices

i . ()
respectively, the matrix B;({t) is also continuous and of dimension m; X ny, u,-"’ePﬁ-”CR'l y VE
QC R% Q, P (j =1,2 are non-empty convex compacta. The functions £@, g@t=1,...,mj=1,2)
depend continuously on their arguments. We specify, in the Euclidean space R™, the terminal

sets M;= M+ M? where M;i'! is a linear subspace of R™, M2 is a convex compactum from the
orthogonal complement Li* to the subspace M;l.
*prikl.Mekhan.Mekhan.,50,1,155-159,1986




112

Kt every instant of time ¢>0 the pursued has the vector ve @ at his disposal. The
admissible control of the pursued is represented by an arbitrary, Lebesgue-measurable function

v(),t>0,v() Q@ Every i-th pursuer has at its disposal the vector u(G=1,21t=1,...,m) and
the i-th player chooses his controls from the class of quasistrategies, i.e. in the form ;¥
=9, 22,0 (), f=1,2 (/2/) . Here for every admissible control () of the pursued u;' (s is

Lebesgue-measurable and for te [0, +), ¥ () e PP (i=1,..., m;j=1,2). The i-th pursuer also
determines the instant =t =[0,+o) of switching the dynamics of motion of the i-th object
from (1) to (2). Thus the admissible strategy of the i-th pursuer P; will be represented by
the triplet (i, U™, Ui). We shall also assume that an additional constraint is imposed on
the instant of switchover, namely, that the pursuers must switch over not later than at the
instant 6,i.e. wu<<O(@=1,...,m.

The aim of the group of pursuers P, ..., P, 1is to bring, using the admissible strategies,
at least one vector z® to the corresponding set M; in some finite time T, no matter which
admissible control v(t) is chosen by the pursued. If on the other hand switchover did not
take place, i.e. 71;=7T, then the game of pursuit is terminated with the arrival of the vector
Bi (1) %MW () at M;.Here the vector function z®(.) and 3'®(.) represent, respectively, the
solutions of systems (1) and (2).

This is then the formulation of the problem of pursuit which we will consider. Naturally,
the case when the pursuit by the method considered below is impossible for all w =0 (or
1; =400 for §= +oo) simultaneously is of interest. We consider the case when pursuit is
possible at all % simultaneously equal to O or +oo. Although it also follows from the
assertions made below, it was already given in /3/. We assume that precisely such a case was
realized in the game (1), (2).

Let us write N={1, ..., m), m: R P —Ld 2°= {2’ ..., 2»°}. Suppose also ;%7 and @:® (1)
are the matrizants of the systems z =C{¥ ()5 and 2z =C® ()5 respectively, with initial
conditions

P, v=EG=121=1,...,m DD n, 5=
;@i ¢ w) B (1) P (v, ) D (8, 1, 0) = mi® (1, 9
Assumption 1. Matrices A (@® (¢=1,...,mij=1,2) depending continuously on time exist

such, that for t>0,0< 1 <¢t,u <6 the following sets are non-empty:
W, (t, 7,5 = DP (¢, v, 8) /D (PV) 2

-
AP (r,~ ) DP (1,7, 0P (Q+ @, s=[0,7)
Wit 7,8 =DP (t,7, 9 P (P2

AP —DP (¢, 7, 8 e (Q + 2, s v, +o0)
T
MPt,t) =M 2 [ S (AP (x, — 5) — B) DP (1,7, 9) g (Q) ds +-
1)
t
S AP —n—E) DD (t, 1, 552 Q) ds] + 3

Y

as well as the functions yi(t T, 3): i (¢ Ti, 8) & Wi (L, i, &), s [0, t] semicontinuous in s from above.
We write
Y
A (T, 5,0,2°, mP) = max {k, A>0, -4 X [Dﬁ‘) (t,7,0)2°—mp2 + S ¥ (t v, 8)dsl e
°
DY (t,7,,5) 0 (PP) — AP (v, — ) DI (¢, 7, ) g () —
¥; (¢, Ty 3)} y se|[0, )

A;(t, T, 8,v,5°, m®) = max {k, A0, —A X

i
t

[Dg.l) Ty 0) 52 —md + S (4%, 9) ds] =
T

k3
DP (¢, 1, 8) £D (PP) — AP (¢t —5) DP (2, 7, 5) 8 (0,
s [t, + o), mPeMi(i, )

A’i (t’ 1iv 8,0, Zi°, Mi:l (ty Ti)) = max A’i (tv tiv 80, z{c' m{8)1
maASMpE.T;)
se=[0,], i=1,...,m

t
Pyt .., T %)= :"(1‘; l‘neaﬁ nsxi (¢, TSV (), zio, M{a (¢, T‘)) ds
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Assumption 2. There exist £, 1@ =1,...,m), 0K’ 1,°< 0, such that p v ..., 1, ) =1,

Theorem. Let the assumptions l.and 2 hold for the game (1), (2) with initial positions
z°. Then the game of pursuit has a solution and ¢ is the guaranteed time of its termination.

Proof. Let us consider the function A;(t, %y, s, v, 5° m®). The function is semicontinuous when
i and 3+ are fixed, from above, over the set of arguments ¢, t;, s v, m® Therefore the multivalued
mapping G (t, %, 5, V) = {m® = M2 (8, 1) A (2, T4y 8, 0, 3°, mB) = A (8, Ty, 8, v, z;°', M}’ (¢, Ty} is semicontinuous from
above with respect to the inclusions, and by virtue of the known property of multivalued
mappings there exists a Borel-measurable selector /3/ m3(, %, s, V) & G (2, v, 3, V).
Let v(s) be an arbitrary, admissible control of the pursued. We shall construct the
control of the i-th pursuer as follows:
1) up to the switchover 0<s << ° %, provided that at the instant s
8
p‘ (8, v (E.)y 0 < E < ‘) =S A’( (‘01 .“a, Eq v (E)v “ol m{, (toy Tiuv E- v (E))) JE < 1
[
the function u®(s) = P/ is a solution of the equation

A (T 8, v (o 2, M2, TN (DD (0,72, 0 50 — ®
o

mp T, m o) + § v, 0 dE) =
[}
DY o, %2, ) £V @ (1) — AP (2 — 0) DP (¢, 72, ) 6 (v () ~ v, (1°, 7,2, )

if &' is the first instant, when p;(s, v(E), 0<E<#Y) =1, then at se: (5, 7% wi(s) is a solution
of the equation
Dgl) (e, .“n’ 3) fg‘l) (u?) T')) - Agl) (T{e —8) D(il) (°, "(°1 9) gSI) ((o)= —v; (z°, LA %)
2) after the switchover 0t °<s< . Similarly, if for the given sp;(s, v (}), 0 < <9 < 1,
then the function u® (s) & P;® will be chosen as a solution of the equation

- A’{ e, 080 (s), ’;c’ Mi’ (e, L)) (D‘(‘l) (¢, Tg.v 0) 73— mi’ (% T;‘r s, v(s))4- )
t°
S v, (8% 7,2, €) dB) = D (2, 1.°, &) /i) (u®) (&) —
T°

AP (2 —3) DP (¢°, 72, 5) 6P v (1) — v, (%, 705 8)

if &' is the first instant, when p; (s, v(}), 0SE< ) =1, then for se (o, °] u;¥(e) is a solution
of the equation
D (e, v, o) £ (i (6)) — AP (©° — 2) DP ¢, 72, 0) 8P (0 (0)) = v, (1%, 7%, 8) ®)
According to the A.F. Filippov theorem the functions ;@ ()= U;¥ (s, 5° v () (f=1,2) constructed
will be Lebesgue-measurable. In addition, the construction yields the inclusion u¥ e Pi)(j=
1,2). In this manner we find the strategy (o, U;®, U;®) (1=1,..., m of the i-th pursuer. The
strategies will guarantee the termination of the pursuit at the instant . Indeed, according
to assumption 2, for the given control v(s),s=[0,#] of the pursued a number ke N and an instant
of time &, 0 s < ® exist such that py (s, v (£), 0 <E <) =1. According to the Cauchy formula we
have, for k, (see (3)—(6))
nz, (69 =m0 QP (°, 7% B(n®) {Q (0, 0) 2,° +
‘Ik°
(P @ 0 P o — o o 08l ()] d:} +

0
10

{ [0 (°, ) P @f () — 2, 0P (°,0) P @ ()] ds =
'l:‘k°

to
[D;“) (15 0 5° + S Py (80 7,2)78) dl] X
0

x
[i — S A (8%, 1% 8, v (5), 3,5 m 3 (8%, 7.0, 5,0 (8) dl] +
0

K

S A (0,70 8,0 (8), 2,0 m B (09T 5, 8, 0 ) m3 @ 7,0 5 v(s)ds +
0

Tkﬂ

§ 4P @ —0)— By DP (%2, 06V (0 () ds +

[

‘0

§ 4P -0 =B DP (e, 50, 08P 0 o) as = Mp

‘I'k°
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Thus the k-th pursuer captures the pursued at the instant ¢ The theorem is proved.

Example. Let us consider the following differential game of group pursuit with a variable
structure. Up to the instant of switchover the equations of motion of the m pursuers and a
single pursued have the form

o'tz =u, i=1,... ,.my=yte (0, 73) m
and after the switchover,
T =ui=1,...,.my = v, t < (1, oo) ®

The initial values are z;(0) == y(0) =1 0<a<{. The pursuers must go through the switch-
over by the time 6>0 inclusive. The game of pursuit will be terminated at some finite instant
of time when the condition |z —y|<R R=—a?*4a?(e—1)In(1 —a) is satisfied for at least one
i.

Here z;, ¥, ui, va RY |y <1, jv[<1. The substitution =z = (2, zs) = (i —p,2;) in (7) and
si=2;—y in (8) leads to the following differential game:

i = 33—V 9
29 = —asp4u, i=1,..,m it (0,1
Zi=u—v t=1,...,m t= (T, +oo) (10)

The initial conditions are
20 (0) = 20.° 23 (0) = 35a°; Ay =E

E 0 0 E
ne=ff o, ol . o=
P = p = Q=25 ()={f=R:|E]|<1}

Here E is the unit matrix and O is the null 2 x 2 matrix.

For this game we have
M= S (0)
o (¢, ) = ey | e —exp(—a(t—T)E
1 (¢, ) = exp {(t — 7) C{} HO E— B 4+ @Y2)E— . ..
Q¥ ) =exp{t—CN=E (1=1,,..,m)
Assumption 1 will hold for the game (9), (l0) if we write A4, () == p; (1) E, A{® () =E, where
¢ ={aﬂ“ —¢,0<t<—a?la(t —a)
B01=1q, t>—atln(l—o)
Moreover we have
M8, T 8 v, 50 mi®) = | g (5D I (¢ — ) {oi (0 ) +
(@1 (9, T0)® + (s (31 — D)* (1 — exp (—a (1 — ) —
lo @, ¢ =10, %)
M (8 T4y 8 7y 5%, m®) = |0 (53) 2 {03 (0, %) + (05 (o W) +1 —
Lo, s & 5, +o0)
m ) = s 4 ot (1 — 0 ") 2y — myd, @ (v, %) = (v, s (%) P (v1))
We have the following estimate for the function A (2%, e, v, 5° m?®) prior to the switchover
i
0 <S M T 8,000, 20, mB)ds < (1)
0
7 (e n (DN + Vel +1) <8 (20 (r) D (2 + Vi + 1)
For the function M (¢, %, 8, v (s), 2% m®) we find, after the switchover, that if the condition

. m -0t . 3
0 gintco iU1 (zn+ot(l—e )z — MUt 7)) {12)

is satisfied then the condition

T
inf max S“L‘(t. T 8, 0(8), 15 M3 (8, 7)) da> A>0

is satisfied for any previously specified numbexr 4 >0, provided ¢hat a sufficiently large T

is taken.
Let m=3. We write 0 =04R(x +VYa*+ 1)la and use as an example the following initial

conditions:
5°=(—2R, R), 2:°=(0,2R), 5m°=(2R,R), s’
(0, —2R(1 — eV @), °=(0,0), m’=2s, 03O
We can easily see that for these initial conditions, condition (12) holds for = =1(=
1,2,3). Moreover we cbtain the following estimate for (11) :
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i3
Sl‘(t,t‘,l,u(l),zi’,m")dl<1, Vi, &[0,0], im1,2,8
0

Therefore the capture of the pursued is possible in the present game only when the instant
of switchover % (0,0], e.g. i=7%(i=1,2,3).
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ON CONSTRUCTING A FUNCTIONAL IN THE PROBLEM OF OPTIMAL CONTROL

ZH. KH. BAIMURZAYEVA

The problem of constructing a functional in the theory of control of
material systems is considered as an inverse problem of dynamics /1/. It
was A.M. Letov /2/ who first became aware of the practical value of the
inverse problems in optimal control. He solved a number of inverse
problems of choosing the optimal functional in problems of controlling
aircraft. The approach was also successfully used in problems of rcbotics
/3/. The procedure used in solving inverse problems makes it possible to
combine the merits and virtues of the engineering problems based on
formulating the control laws from the conditions of motion according to

a given program, with the possibilities offered by methods of optimal
control theory.

Let us consider a controlled object described by a system of ordinary differential

equations
z'=f(z,u,t), z=R", us R" 1)

where f is a continuously differentiable vector function, u is a piecewise continuous control
and 0t T. The initial condition a=2(0) and time T will be assumed given. We shall call
the pair {u(t),z(y)} the admissible process, if u(t),z(f) satisfy (1).

We shall treat the inverse problem of optimal control for the object in question as a
problem of determining a continuously differentiable function f,(r, u), such that the solution
of the problem of maximizing the functional

T
J= Sf., (z, u)dt )
0
leads to the given admissible process {u*® (t), z* ()}.

Let us write the unknown function f,(z,u) as the sum of the continuously differentiable
functions ¢,(z,u)(s=1,2,...,p) in the form

»
folz, =3 9, (=, 1)

=1
In this case the inverse problem of optimal control will be reduced to finding all
coefficients ¢, (s=1,2,...,p), such that the maximization of the functional
T p
J =S S, .9, (z, w)dt 3
0 sam)

when (1) is satisfied, leads to the given admissible process {u® (), z* (1)}, 0 <t < 7.

In order to exclude the trivial case where all coefficients ¢, are zero (in this case
any admissible process will be optimal for a functional identically equal to zero), we shall
introduce the concept of a non-degenerate solution of the inverse problem: we will call the
solution of the inverse problem non-degenerate, if at least one of the coefficients ¢, is not
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